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In this article we discuss a method for the solution of non-separable eigenvalue
problems. These problems are taken to be elliptic and linear and arise in a whole
host of physically interesting problems. The approach exploits finite differences and
a pseudo-spectral scheme. We elect to normalise at a single point, which is usually
internal to the domain, and exploit the fact that the partial differential equation has not
been satisfied at this point to determine whether we have an eigenvalue of the system.
The eigenvalue solver is of a local nature and is consequently relatively inexpensive
to run. c© 1999 Academic Press
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1. INTRODUCTION

In order to understand the dynamics of many physical situations, whether they be macro-
or microscopical in nature, one is compelled to solve an elliptic eigenvalue problem. By
the use of physical arguments, for instance symmetry, it is often possible to reduce these
problems to ones governed by ordinary differential equations. However, there are many
cases where this is infeasible and any form ofad hocapproximation can lead to results
that are totally unreliable. Such elliptic eigenvalue problems occur in many different fields,
from meteorology [3] and quantum physics [1] to fluid stability [2] and the behaviour of
magnetic dynamos [4].

We shall not dwell upon any physical setting which results in such elliptic eigenvalue
problems but will merely give a brief description of one which arises in the study of the
stability of fluid flows. In the work of Hall and Horseman [2] the authors discuss the
susceptability of nonlinear counter-rotating vortices within a boundary layer to secondary
instabilities; the existence of such secondary instabilities has been identified as an impor-
tant factor in the process of transition to turbulence. In a similar vein, the work of Otto,
Sarkies, and Denier [8] considers the influence of a spanwise perturbation on the stability
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characteristics of Kelvin–Helmholtz waves within compressible mixing layers. Both arti-
cles solve an equation which governs the structure of perturbations to a given basic flow
ū(y, z) in the form of travelling waves proportional to exp(iα(x−ct)). The complex phase
speedc is determined as a function of a real streamwise wavenumber,α, by solving

L(P) ≡ ∂2P

∂y2
+ ∂

2P

∂z2
− 2

ū− c

∂ū

∂y

∂P

∂y
− 2

ū− c

∂ū

∂z

∂P

∂z
− α2P = 0, (1)

subject to suitable boundary conditions (determined by the physics of the particular flow in
question). In (1),P is the perturbation pressure,ū denotes the basic velocity component in
the streamwise,x, direction withy andz the ordinates of the other two mutually orthogonal,
Cartesian axes. Similar equations arise in a meteorological context with additional terms
present to account for buoyancy forcing (a generalisation of the Taylor–Goldstein equation
applicable to baroclinic instabilities), and in quantum problems with a potential varying
in more than one spatial coordinate (Schr¨odinger’s wave equation). Thus, although our
motivation arises from fluid dynamics, there are many other physical problems in which
these methods can be used.

In this article we shall detail the numerical scheme used to solve (1) and where possible
we shall explain how this approach would be modified to solve problems from different
physical settings, in varying geometries. Solutions are given for two model problems from
fluid dynamics.

2. FORMULATION

We shall consider the elliptic linear eigenvalue problem (1), for two different fluid stability
problems: a periodic array of jets in the neighbourhood of a solid boundary, located aty= 0,
and a periodic perturbation to an otherwise uniform shear flow. The flows are both taken
to be periodic in the spanwise coordinate and as such we shall impose the condition that
P(y, z)= P(y, z+2π), so that the perturbation has the same periodicity as the underlying
basic flow. In the bounded problem we impose the condition that∂P/∂y= 0 aty= 0 (which
is a simple consequence of the impermeability of the plate). In the unbounded problem (and
far from the plate in the former problem) we impose the condition that the disturbance
pressure decays to zero.

The precise form of the decay conditions is determined by an asymptotic consideration of
(1). This is a relatively straightforward exercise for the two model flows considered here, but
can become less trivial in other problems. For instance those problems formulated within
cylindrical polar coordinates may require the use of Bessel functions, and consequently
a knowledge of their asymptotic forms for large arguments. In the present context, the
requirement that|P| → 0 at the upper extreme of the region in the bounded problem is
imposed at some outer boundy= y∞ via the Robin condition

∂P

∂y
+ αP = 0.

In the case of an unbounded domain the decay conditions|P| → 0 as|y| → ∞ are replaced
by

∂P

∂y
± αP = 0 at y = y±∞.
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In order to discretise (1) we elect to use a pseudo-spectral scheme in thez coordinate and
a five point central finite difference scheme in they coordinate; the computational grid has
Ny× Nz points. The discretized equation (1) can be written as

A
¯̄ j P

¯ j+2+ B
¯̄ j P

¯ j+1+ C
¯̄

j P
¯ j + D

¯̄ j P
¯ j−1+ E

¯̄ j P
¯ j−2 = R

¯ j , (2)

for j = 2, . . . , Ny − 1. Each vectorP
¯ j is of lengthNz and represents thez variation at

y= yj . The matrices in (2) are of a sizeNz× Nz and are given by

A
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)
,

together withR
¯j = 0

¯
(where I

¯̄
is the Nz× Nz identity matrix). In these expressions

(ai, j , bi, j , ci, j , di, j , ei, j ) are simply the stencil weights associated with thei th y-derivative
at yj , which can be obtained by using a Taylor series expansion about the grid point in
question. The coefficientsfi j andgi j are the values of the functions multiplying∂P/∂y and
∂P/∂z in (1) evaluated at the pointy= yi andz= zj . The matrices associated with thez
variation are1
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¯
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¯
, where the matrixF̄

¯
transforms into the

Fourier space andD̄
¯

is the diagonal matrix which multiplies each Fourier component by
its mode number and

√−1 (and hence produces the spatial derivative). These are given by
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)
.

Notice at the points near the boundaries (iny) biased stencils are used and henceE
¯̄2 and

A
¯̄Ny−1 are empty. The boundary conditions constitute the first and last equations: for the
semi-infinite (wall) bounded problem we have

j = 1 a1,1 P
¯3+ b1,1 P

¯2+ c1,1 P
¯1 = 0

¯
j = Ny

(
c1,Ny + α

)
P
¯ Ny
+ d1,Ny P

¯ Ny−1+ e1,Ny P
¯ Ny−2 = 0

¯

(3a)

while for the infinite (unbounded) case we require

j = 1 a1,1 P
¯3+ b1,1 P

¯2+ (c1,1− α)P¯1 = 0
¯

j = Ny
(
c1,Ny + α

)
P
¯ Ny
+ d1,Ny P

¯ Ny−1+ e1,Ny P
¯ Ny−2 = 0

¯
.

(3b)

Notice that it is possible to cater for boundary conditions of the formk(z)∂P/∂y+ l (z)P =
0, in which case the scalars in (3) are replaced by the matrices which will arise from the
spectral decomposition of the functionsk(z) andl (z). The resulting system is now block
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penta-diagonal, which can be solved by Gaussian elimination in a manner which minimises
the storage requirements. The question now arises as to how to determine the complex phase
speedc. In general direct methods are prohibitively expensive in terms of CPU time therefore
an iterative method is the natural choice. In order to implement such an iterative scheme
it is necessary to normalise the system (2) in some suitable manner. In bounded problems,
for instance those discussed in Hall and Horseman [2] and Otto [5], a renormalisation
was used, in which the boundary condition aty= 0 was replaced with∂P/∂y|y=0= f (z).
Iteration on the eigenvaluec was used until the integral ofP2 at y= 0 becomes large; when
this integral becomes suitably large the boundary condition∂P/∂y|y=0= 0 is satisfied
following a renormalisation. In unbounded problems it is possible to use an alternating
Schwarz technique.

Here, and in the work of Ottoet al.[8], we normalise at a single internal point rather than
at a boundary. We choose a point(y, z)normalise(notice that this point can be at a boundary,
provided the boundary conditions are not of a Dirichlet form) and replace the discretised
equation at the normalising point by

P
∣∣
(y,z)normalise

= 1.

The fact that the differential equation has not been satisfied at this point is used to iterate
on the eigenvalue until ∥∥L(P)∣∣

(y,z)normalise

∥∥< tolerance,

where‖ • ‖ is some suitable norm. We note thatL(P)|(y,z)normalise is a function ofc, and as
such can be used to determine eigenvalues of the system. If the normalising point is on a
boundary then the fact that the boundary condition has not been satisfied can be used for
the iteration process. A conventional secant method is adequate for the iterative procedure.
This technique has the advantage over that employed by Hall and Horseman [2] in that the
boundary conditions are satisfied explicitly and there is no reliance on choosing a function
f (z) (as there would be in an alternating Schwarz technique). The rate of convergence onto
the eigenvalues is much improved and calculations for different values ofNz are easier to
compare. It is possible to do inexpensive parameter studies using relatively small values of
Nz; larger values ofNz can then be used to further resolve any important, or interesting,
results arising from such a parameter study.

Runs for moderate grid sizes (Ny = 100− 400 andNz = 16− 64) were performed on a
Silicon Graphics Workstation R5000; however, the larger parameter runs were performed
on a SGI Power Challenge and a Fujitsu VPP300. We shall now discuss two model problems
arising in fluid dynamics which serve to demonstrate the utility of the algorithm described
above.

3. RESULTS

We shall initially consider a model of the flow within a periodic array of jets above a
plane boundary. The “basic flow” is taken to be a modified form of the asymptotic suction
profile, namely

ub(y) = 1− e−y(1+ ζ y),
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where the parameterζ is used to introduce an inflection point into the flow (ζ = 0 corre-
sponds to the conventional asymptotic suction profile). Note that the flowub has an inflection
point aty= (2ζ − 1)/ζ (providedζ >1/2). Such inflectional flows will support growing
disturbances in the form of inviscid travelling waves. It was shown in [5] that spanwise pe-
riodic perturbations (G¨ortler vortices) will increase the instability of an inviscidly unstable
flow (in this case a boundary layer with an adverse pressure gradient). It is also possible for
non-inflectional profiles to be modified by the spanwise perturbations to become inviscidly
unstable, such as those considered by Hall and Horseman [2] and Otto and Denier [6].

The total flow is taken to be

ū(y, z) = ub(y)+ 1
2

exp
(−(y− yc)

2
)
(cosz+ 1)ub(y)

for the case of the periodic jet array, where the variableyc denotes the centre of the “jets.”
The second flow of interest is taken to be

ū(y, z) = y+ 1
2

exp
(−(y− yc)

2
)
(cosz+ 1). (4)

(In this case the Robin boundary condition must be modified in order that, in line with the
largey asymptotic behaviour of the solutions of (1),P→ ye∓αy asy→±∞.)

In Fig. 1 we present a plot of the normal perturbation (real and imaginary part) for a value
of α= 0.2; the corresponding eigenvalue isc= 0.232+ 0.527i and was calculated using
Ny= 100 andNz= 32. In Fig. 2 we present in part (a) a plot of the imaginary part of the

FIG. 1. The normal component of the velocity perturbation for the case (real and imaginary parts)yc = 5,
ζ = 1, andα= 1/5, corresponding toc= 0.232+ 0.527i (Ny= 100,Nz= 32).
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FIG. 2. The effect of a spanwise perturbation to an unbounded uniform shear, showing the imaginary part
of the pressure (a). The parameters used areα= 1/5 andyc= 0 with a vortex amplitude of 1.5, which yields
c = −.0209+ 0.01593i (Ny= 400,Nz= 32). The corresponding growth rate is shown in (b).
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eigenfunction, for a value ofα= 0.2 with yc= 0 and in part (b) a plot of the growth rate
αci versusα; the base flow̄u is given by (4). Note here that the “smallness” of the growth
rate is due to the fact that the instability is due entirely to the introduction of the inflectional
two-dimensional component to the basic shear flowub= y. Both flows are unstable and
the eigenvalues and corresponding eigenfunctions are readily computed. To produce the
results in Fig. 2b (which represents 45 data points with a computational grid 400 by 32)
took 4900 s on a Silicon Graphics O2 (R5000).

4. CONCLUSIONS

We have described a method whereby eigenvalue problems governed by partial differen-
tial equations can be solved efficiently and cheaply (in terms of CPU). Here a normalisation
condition is imposed at an internal point and any boundary conditions are satisfied explic-
itly. The resulting inhomogeneous system can then be inverted (efficiently in the case of
the banded systems encountered in the example considered here) and iteration upon the
eigenvalue carried out until the discretized equation is satisfied (to within some prescribed
tolerance) at the normalisation point.

The utility of this technique is threefold. First, it provides an efficient (local) method
whereby eigenvalue problems governed by partial differential equations can be solved. The
normalisation procedure is a natural one which is easy to implement. Second, there is no
restriction on the form of the partial differential equations which can be tackled using this
technique. It can be as readily applied to the single equation discussed here as it can to higher
order systems such as those encountered in studies of viscous stability theory or more com-
plex flows, as in Otto and Streett [7], as well as to other forms of differential operators such
as the ballooning Schr¨odinger equation arising in plasma physics [1]. Importantly, from the
standpoint of tackling “real world” problems the differential operators are not required to be
separable and the domain of the resulting eigenfunction can be bounded, semi-infinite, or
unbounded (in one or more of the independent variables). In the case of unbounded domains,
the only modifications that are required to the scheme result from the form of boundary
conditions that act to close the system. Thus, for example, systems in which the domain of
the “flow” u(y, z) is infinite in thez-direction (with perhaps compact support inz) can be
accommodated provided the correct form of decay boundary conditions are implemented.
This technique can also be employed to solve eigenvalue problems which possess remov-
able singularities at a boundary. Many such problems occur within fluid dynamics when
considering the stability of flows best described by using a cylindrical polar coordinate
system. The choice of normalisation away from the vicinity of the singularity, together with
the ability to explicitly satisfy boundary conditions, makes this method particularly useful
in such cases.

Finally, it is worth emphasizing that the algorithm described above is equally suited to
solving spatial eigenvalue problems governed by elliptic partial differential operators. In
this case one fixes the real frequencyαc and iterates on the complex “wavenumber”α until
the convergence criteria is satisfied.
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